Cobalt Schiff Base Complex Catalyzed Dehydrogenation of Amines with t-Butyl Hydroperoxide

Kazushige MARUYAMA, Takahiro KUSUKAWA, Yoshihiko HIGUCHI, and Akira NISHINAGA*

Department of Applied Chemistry, Osaka Institute of Technology, Ohmiya 5, Asahi-ku, Osaka 535

Cobalt Schiff base complex catalyzed oxidation of secondary aromatic amines with t-butyl hydroperoxide resulted selectively in dehydrogenation to give the corresponding imines. Proposed mechanism involves electron transfer from the nitrogen atom in the substrate to t-butyloxyl or t-butylperoxyl radical produced in situ from a t-butylperoxocobalt(III) complex intermediate.

Metal catalyzed oxidations are very important in connection with biological as well as synthetic processes. 1) Cobalt(II) Schiff base complexes [CoII(SB)] are of particular interest because they function as artificial metal containing oxidoreductases including dioxygenases, monooxygenases and peroxidases. Co^{II}(SB) complexes also catalyze t-butylperoxylation of phenols²⁾ and hydrazones,³⁾ and dehydrogenation of alcohols⁴⁾ with t-butyl hydroperoxide (TBHP). Metal catalyzed dehydrogenation of amines is also important area in organic synthesis.⁵⁾ In a previous paper we reported the dehydrogenation of secondary amines to imines by the oxidation using the $O_2/Co^{II}(salen)$ system, of which mechanism electron transfer from the amine to Co^{III}(salen)(OH) species.⁶⁾ In a series of studies on Co^{II}(SB) catalyzed oxidation using TBHP as the terminal oxidant, we have examined the oxidation of secondary amines with TBHP. The TBHP/Co^{II}(SB) system is now found to be able to oxidize amine substrates which are unsusceptible to the O₂/Co^{II}(salen) system including tertiary amines,⁶) where the products are similar to those obtained in the cytochrom p-450 system.

A solution of TBHP (4.8 mmol), amine (1) (4.0 mmol), and $Co^{II}(L^1)$ (0.8 mmol) in dimethylsulfoxide (DMSO) (20 ml) was warmed at 40 °C for 8 h. The reaction mixture was then diluted with a saturated brine (200 ml) and extracted with ether. The ether solution was washed with water, dried over sodium sulfate, and evaporated. The resulting residue was chromatographed on a Florisil column with ether as the eluent. The structures of the products were identified by comparison with authentic samples (^{1}H NMR, IR).

$$X \longrightarrow NHCH_{2} \longrightarrow Y \xrightarrow{TBHP/Co(L^{1})} X \longrightarrow N=CH \longrightarrow Y+Y \longrightarrow CHO$$

$$1 \qquad 2 \qquad 3$$

$$a \; ; X = Y = H \qquad b \; ; X = OMe, Y = H \qquad c \; ; X = Me, Y = H$$

$$d \; ; X = CI, Y = H \qquad e \; ; X = H, Y = NO_{2} \qquad f \; ; X = H, Y = OMe$$

$$g \; ; X = H, Y = Me \qquad h \; ; X = H, Y = CI \qquad i \; ; X = Y = OMe$$

$$j \; ; X = Y = Me \qquad k \; ; X = Y = CI$$

$$O \longrightarrow Co^{II}(L^{1}) \; ; \quad Z = CH_{2}CH_{2} \qquad Co^{II}(L^{4}) \; ; \quad Z = O(CH_{3})_{2}C(CH_{3})_{2}$$

$$Co^{II}(L) \qquad Co^{II}(L^{3}) \; ; \quad Z = O(CH_{3})_{2}C(CH_{3})_{3}$$

Table 1. Oxidation of amines 1 with TBHP catalyzed by $Co^{II}(L^1)^{a}$

Run	1	[Co]/[1]	Reaction time/h	Conversion %	Yield/% ^{b)}	
					2	3
1	1 a	0	8	0	0	0
2	1 a	0.2	8	91	94	6
3	1 b	0.2	0.75	100	95	5
4	1 c	0.2	4	98	94	6
5	1 d	0.2	8	97	96	4
6	1 e	0.2	8	97	90	10
7	1 f	0.2	8	93	93	7
8	1 g	0.2	8	96	96	4
9	1 h	0.2	8	97	98	2
10	1 i	0.2	0.25	98	100	0
11	1 j	0.2	4	99	96	4
12	1 k	0.2	8	94	97	3

a) Reaction conditions: (1) (4 mmol), TBHP (4.8 mmol), Co(L¹) (0.8 mmol), DMSO (20 ml), 40 °C. b) Determined by ¹H NMR.

The results obtained in the $Co^{II}(L^1)$ catalyzed dehydrogenation of substituted N-benzylanilines (1) are summarized in Table 1. As seen from Table 1, no reaction took place without the Cobalt catalyst (Run 1), and the dehydrogenation of 1 was generally catalyzed by $Co^{II}(L^1)$. The p-substituent X in the aniline moiety of 1 influenced the reaction rate (Runs 3, 4), whereas nearly no substituent effect was observed with the substituent Y in the benzylic group (Runs 6-9). Similar results were obtained in the stoichiometric reaction of 1 with $Co^{III}(L^1)(OOBu^t)$, indicating

that the reactive species in the catalytic reaction should be the t-butylperoxocobalt(III) complex which is rapidly formed by the reaction of $Co^{II}(L^1)$ with TBHP.⁷⁾

The present TBHP/Co^{II}(L¹) system was found to be effective for the dehydrogenation of compounds 4, 5, and 6 (Y=H) selectively to give 7 (37% in 8 h), 8 (85% in 4 h), and 9 (95% in 10 h), respectively, although these sterically hindered aniline derivatives and N-benzyl aliphatic amines were unsusceptible to the dehydrogenation in the $O_2/Co^{II}(salen)$ oxidation system (no reaction in 24 h). Compound 10, nevertheless, was not reactive against the TBHP/Co^{II}(L¹) system. Furthermore, compound 11, which is absolutely stable against the $O_2/Co^{II}(L^1)$ system, was oxidized effectively by the TBHP/Co^{II}(L¹) system (93% conversion in 6 h) to give 1a (12%), 2a (38%), 3a (17%), and N-benzylformanilide (12) (7%). The results resemble those obtained in the cytochrome p-450 oxidation system.⁸)

The dehydrogenation is also influenced by the structure of $Co^{II}(SB)$. The conversions of 1a with TBHP for 6 h using $Co^{II}(L^1)$, $Co^{II}(L^2)$, $Co^{II}(L^3)$, $Co^{II}(L^4)$, $Co^{II}(L^5)$, and $Co^{II}(L^6)$ were 95.4%, 93.8%, 31.0%, 16.6%, 95.6%(1.5 h), and 0.9% respectively, indicating that the reactivity of $Co^{II}(L)$ is in the order: $Co^{II}(L^5) > Co^{II}(L^1) > Co^{II}(L^2) > Co^{II}(L^3) > Co^{II}(L^4) > Co^{II}(L^6)$. On the other hand, in the dehydrogenation of 1a with the $O_2/Co^{II}(SB)$ system, the sterically hindered complex $Co^{II}(L^5)$ was catalytically inactive. The observed reactivity of $Co^{II}(L)$ may be attributed to the ability of homolytic cleavage of the Co-O bond in $Co^{III}(L)(OOBu^t)$. Furthermore, the results obtained with $Co^{II}(L^5)$ suggest that the dehydrogenation with the present $TBHP/Co^{II}(SB)$ system does not include the coordination of 1a to the Co^{III} center.

Hammett plots of relative rate $(\log V_X/V_H)$, determined by the competition reaction between 1a and 1b-1d for the oxidation with the TBHP/Co^{II}(L¹) system, against the σ^+ values gave a straight line ($\rho = -1.1$), where V_X and V_H refer to the rates of 1b-1d and 1a, respectively (Fig.1). The results support the mechanism involving electron transfer from the nitrogen atom of the substrate. Similar results are also obtained with the $O_2/Co^{II}(L^1)$ system ($\rho = -1.8$ against σ^+).6) Time dependent dehydrogenations of p-substituted benzylaniline 1 (X = H, Y = MeO, Me, H, Cl, NO_2) and N-t-butyl-p-substituted benzylamine 6 (Y = MeO, Me, H, Cl, NO_2) showed almost no substituent effect.

Fig.1. Hammett plots for the $Co^{II}(L^1)$ catalyzed oxidation of 1 (Y=H) with TBHP. Conditions: [1] = 50 mM, $[Co^{II}(L^1)]$ = 10 mM, [TBHP] = 125 mM in DMSO; 40 ± 0.1 °C.

From all these findings, the proposed mechanism involves electron transfer from the nitrogen atom in the substrate to t-butyloxyl or t-butyloroxyl radical generated from the decomposition of a t-butyloroxocobalt(III) complex formed in situ. A small value of deuterium isotope effect $k_{\rm H}/k_{\rm D}=1.3$ observed for the oxidation of PhNHCD₂Ph and the fact that the oxidation of N,N-dimethylaniline by the TBHP/Co^{II}(L¹) system gave N-t-butyloroxy-N-methylaniline, N-methylaniline also support this mechanism.

References

- 1) R. A. Sheldon and J. K. Kochi, "Metal-Catalyzed Oxidations of Organic Compounds", Academic Press, (1981); B. M. Sharpless, *Aldrichimica Acta*, 12, 63 (1979).
- 2) A. Nishinaga, Protein, Nucleic Acid, Enzymes, 26, 214 (1983) (ISCN0371-9565).
- 3) A. Nishinaga, S. Yamazaki, and T. Matsuura, Tetrahedron Lett., 27, 2649 (1986).
- 4) A. Nishinaga, I. Sugimoto, and T. Matsuura, Nippon Kagaku Kaishi, 1989, 249.
- 5) S. Murahashi, T. Naota, and H. Takai, J. Chem. Soc., Chem. Commun., 1985, 613.
- 6) A. Nishinaga, S. Yamazaki, and T. Matsuura, Tetrahedron Lett., 29, 4115 (1988).
- 7) A. Nishinaga, H. Ohara, and H. Tomita, Chem. Lett., 1983, 1751.
- 8) D. C. Heimbrook, R. I. Murray, K. D. Egeberg, M. W. Nee, and T. C. Bruice, J. Am. Chem. Soc., 106, 1514 (1984).

(Received March 26, 1991)